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INTRODUCTION

In this paper I consider variations on a theme of Edmund Landau:
namely, if a function and its nth derivative (n ~ 2) are bounded, say on the
real line, then so are all the intermediate derivatives and bounds can be
obtained relating the size of the rth derivative, 0 < r < n, to those of the Oth
and nth derivatives; further, the function which has the largest rth derivative
is (essentially) unique and possesses a number of interesting properties. See
[2] for references to Landau's work.

The problems considered here are modifications of the following. Let ,10

be the open unit disc in the complex plane, let n be an integer ~2, let
r Ell,..., n - I}, let K be a compact subset of ,1 = {z: Iz I~ I} with n or
more points and let a be a positive number. The problem is to find among
those functions f which are holomorphic on ,1 0 and which satisfy

one for which

max{lf(z)l: z E K} ~ 1,

sup If(n)(z)1 ~ a,
ZE.:1 0

(1)

(2)

is as large as possible. Since f(') is continuous on ,1, the problem above is
equivalent to this one. Let c; E aLi = T = {I z I= I} be fixed. Find those
functions F satisfying (1), for which IF(') (c;)1 equals

yea) =: max{IP')@I:fsatisfies (I)}. (2')

Of course, y depends on K, C;, nand r, as well as a, but I suppress this
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dependence in my notation. Before proceeding to analyze the solutions of
this extremal problem, I will generalize it slightly. Let 1 <p:::;; 00, and let HP
be the usual Hardy space of functions on Llo; see [1], for example. With n, r
and a as above, and with ~ any point of .1 which is not in the interior of the
convex hull of K, the new extremal problem is this: find among those
functions, holomorphic in .10 and satisfying

max If(z)1 :::;; 1,
zeK

and
(1' )

one for which Iprj (~)I is as large as possible. The subscript p in (1') refers to
the HP norm of f(nJ. Let y(a,p) denote this maximum:

y(a,p) =: max{lf(rJ(~)I:fsatisfies(1 ')} (3)

so that y(a, (0) = y(a). Any function F satisfying (1') for which
F(rl(~) = y(a,p) will be termed extremal. A simple normal families argument
shows that there is at least one extremal function. I shall show in Section 1
that there is precisely one extremal function. In Section 2 I analyze the
growth of y(a,p), as a function of a, when a~ 00, in relation to the set K.
Finally, in Section 3, I describe a few properties of the extremal function.

1. UNIQUENESS

Define X to be those holomorphic functions f on .1 0 for which f(n) E HP,
and define a norm on X by

where

Ilfll=max lllfllK' ~ Ilf(nlllp !,

IlfilK = max{lf(z)l: z E K}.

(4)

With this norm, X is a Banach space and the functions satisfying (1') are
precisely the unit ball of X. Hence, y(a,p) is the norm of the linear
functional on X given by 10(1) = j(rJ(~). The extremal problem is then to
determine the norm of this functional 10 and to find those elements of X at
which 10 attains its norm. X is a closed subspace of the Banach space Y
consisting of the direct sum of qK) and L P with norm
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when we make the usual identification of HP with the closed subspace of
LP = LP(T, dO) consisting of those functions whose negative Fourier coef­
ficients vanish; see [1). The dual space of Y is the direct sum of 1(K), the
finite regular Borel measures on K, and LP', where pi is the conjugate
exponent of p, with the norm

11(u, h )11 = 11.u II +a II h lip"

Basic duality for Banach spaces then implies

y(a,p) = inf{lllll: 1E Y*, 1= 10 on X}

= inf{ll/o+mil: m E Y*, m 1- X}.

Now if jE X, thenj(z) = Lbo ajz
j

for z E L1 and so

00 ,

= ')' a s. C;s-r
....... s (s - r)'s=r •

n-I ,

L as s. , C;s-r + r pnl(ei£J) G(ei£J) dO,
s=r (s-r). "T

where

(5)

(6)

(7)

Note that G lies in LP for all finite p, even if r = n - 1 and Ic;! = 1. If.u is a
measure on K, define

(8)

There are two immediate consequences of (8). The first is that each pair
(U, v) E y* which annihilates X has the form (U, L.u + h) where h E H~', and
.u satisfies

f zSd.u(z)=O
K

for s = 0,..., n - 1. (9)

(Hf consists of those HP' functions with mean-value zero.) The second is
that if
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then

0,

s! ~s-r
(s-r)! '

o~ s < r,

r~s~n-l,

(10)

Set

A = {,u E 1(K): (10) holds}.

fEX,
(11 )

(12)

Then formulas (5)-(7), (9)-(11) imply the important relation

Here LP'/Hr is the usual quotient space of U' by Hr. Formula (13) will be
the basis for much of what follows.

The linear transformation L carries 1(K) into C(T) and is continuous
from the weak-* topology to the norm topology since n ~ 2. It follows from
this and from the fact that the unit ball of H~' is weakly compact for
1 <p' < 00 and weak-* compact in 1(T) if p' = 1, that for each a > 0 there
is at least one measure ,uu E A and at least one hu E Hr for which equality
holds in (13):

Now let F u be an extremal function. Then

y(a,p) = F~)(~)

=f Fu d,uu +f F~n)(L,uu + G + hu) dO
K T

~ II,uull +a IIL,uu + G + hull p '

= y(a,p).

Consequently, equality holds throughout and we learn that

(a) !Ful = 1 on supp(,uo),

(b) Fu d,uu is a non-negative measure.
(14 )
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and

a.e. dO, (15)

(a) lF~n)1 = 1 a.e. dO where Lpo + G +ho "* 0 ifp = 00,

(b) lF~n)IP=cILPo+G+hoIP' a.e.dOifl<p<oo,
(16)

where c = aP/IILpo + G + hoII P'.
In (16)(a) if Lpo + G +ho = 0 a.e. dO, then Lpo + G = 0 a.e. dO since

Lpo + G is the conjugate of an element of H 2
• However, this would imply

that

so that

for j = 0, 1,...,

for allfE X, (17)

and, in particular, for all functions holomorphic in a neighborhood of J.
Since e does not lie in the interior of the convex hull of K, there is a sequence
{in} of polynomials for which fn -t 0 uniformly on K but If::)(e)l-t 00, a
contradiction to (17). Thus, Lpo + G +ho "* 0 on a. set g of positive
Lebesgue measure in T. If H is another extremal function, then so is
HFo +H) and so all the conclusions in (14), (15), (16) apply to H and to
HFo+H). Thus F~n) = H(n) a.e. on T if 1 <p < 00 by (15) or F~n) = H(n)
a.e. on g if p = 00 by (16), and hence F~n) = H(n) a.e. on T. In either case,
Fo - H is a polynomial of degree n - 1 or less. However, (14)(a) implies
F0 = H on the support of Po' I show below that Po has n or more points in
its support; this implies immediately that Fo == H. To see that Po has n or
more points in its support, note that f p dpo = p(r) (C;) for all polynomials p of
degree n - 1 or less. If supp(,uo) = gp..., 'sf, where s ~ n - 1, set
P(z) = TI~ (z - 'j)' Then P = 0 on support Po but p(r)(c;)"* 0 by the
Gauss-Lucas theorem (recall ~ does not lie in the interior of the convex hull
of K). This completes the proof of uniqueness.

I summarize the results of this section.

THEOREM 1. There is precisely one function F satisfying (1') with

F(r)(e) = max {! f(r)(e)l:fsatisfies (1 ')}.
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COROLLARY 2 . Suppose K is symmetric with respect to the real axis and
r is real. Then F,, is real on the real axis.

Proof: G(z) = F,(Y) is another extremal function and hence coincides
with F,.

2. T HE D EPENDENCE OF Y(U)ON u AND K

I begin with a look at the measure ,u,.

DEFINITION. Let pE (1, co] be fixed. A measure ,D E /1 for which
equality holds in (13) will be termed extremal. That is, ,U is extremal if

0, O<s<r,

I
zS dp(z) =

I

s! (18)
K (SC-‘, r<s (4

and

~(0,  P) = 11~ II + 0 IlO + Gllw,,~~~ (19)

PROPOSITION 3. If 1 <I, ( 03, then there is precisely one extremal
measure.

Proof: Let ,U and v be extremal measures. Then p = f@ + V) lies in d so
that

Y(~,P) < IIPII + ~7 WP + GII
Q f llclll  + 4 lldl  + 40 IlO + GII + $0 lb + ‘41
= Yh P).

Hence, because Lp’/H{’ is uniformly convex,

Lp+G=Lv+G, mod H$‘. (20)

Now L,u + G and Lv + G both are the complex conjugates of Hz functions
so (20) implies that Lp = Lv. Thus,

(, z’ 4(z) = I, z’ Wz), j = 0, 1) 2 )... . (21)

Hence, p - v is orthogonal to all functions analytic on d. But F, dp and
F, dv are both non-negative measures so that the real measure F,(dp - dv) is
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orthogonal to zj for j = 0, l, 2,.... Thus, this measure must vanish and so
/i = v. (We note parenthetically here that any extremal measure /i is
supported on the outer boundary of K since lFol = 1 on supp(,u) and 1~ IFI
on K.)

Remark. In the case when K is symmetric with respect to the real axis it
is not difficult to show that for 1 <P < 00 the (unique) extremal measure /io
is also symmetric with respect to the real axis in the sense that the /io­
measure of a set E in K is the complex conjugate of the /io-measure of the set
{z:zEE}.

We now investigate how y(a) behaves as a function of a. Recall formula
(12):

where

and

y(a,p) = inf{ll/i II +a II S/i IILP'fHP': /i E A},o

OCJ ., l !S/i =: L/i + G = L /. f zHn d/i(z) e-ijrJ
j=O (}+n) K

OCJ .,

+ ') J. ~Hn-re-ljrJ
/;;'0 (j +n - r)!

0<, s < r,

r<,s<,n-1.

0,

A = l/i E .L(K): fZS d/i(Z)! = s! ~s
(s - r)! '

Note that S(t/il + (1- t)/iz) = tS/i1 + (1 - t) S/iz for any t E IR and that A is
a convex set. Note further that S is continuous from A with the weak-*
topology into U' for 1 <,p' <, 00. I now write y(a) for y(a,p), p being fixed.
As well, I shall drop the subscript LP'/Hr on the norm of S/i. Define

A(a) = inf{ll/i II: /i E A and y(a) = li/i II +a II S/i II}, (22)

1
B(a) = - [y(a) - A(a)]. (23)

a

When 1 <p < 00, A(a) = li/iull since the extremal measure is unique; when
p = 00, A(a) is the smallest variation of any extremal measure.

THEOREM 4. (i) y(a) and A(a) are increasing functions of a and B(a)
is a decreasing function of a.

(ii) y(a) is continuous and is in Lip 1.

(iii) If 1 <p < 00, then A and B are continuous and y is differentiable
with y'(a) = B(a).
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(iv) Ifp = 00, then A and B are left continuous and y is left differen­
tiable with left derivative equal to B(o).

(v) Y is concave down.

(vi) limu-->oo y(o)/o exists and equals limu-->oo B(o).

Proof For each t >0 there is a At E A with A(t) = IIAtl1 and y(t) =

IIAtl1 + til SAtll. If 0 >0, then

y(t) ~ IIAtHl1 + t IISAt+~ II

< IIAtHl1 + (t + 0) IISAtHl1

= y(t +0).
Hence, y is increasing. For any real number 0, we have

y(t) ~ IIAtHl1 + t IISAtHl1

= y(t + 0) - 0 IISAtHl1

and

y(t + 0) ~ IIAtl1 + (t + 0) IISAtl1

= y(t) +0 II SAt II,

so that

B(t + 0) ~ (y(t + 0) - y(t»/o ~ B(t), 0> 0, (24)

and the reverse inequalities if 0 <O. This shows B is decreasing. Once B is
shown to be continuous (or left-continuous) then (24) will show y is differen­
tiable (or left-differentiable) with derivative equal to B(0).

The inequality

y(t +0) ~ y(t) +0 IISAtl1

derived above implies that

Iy(o) - y(r)1 ~ 10 - rl M, 0, r > 0,

where M = maxuB(o). We note that B(o) is bounded for 0 ~ 1 and hence all
o since

B(o) = IIL,uu +Gil ~ II Gil + IlL 1111,uull

~ II Gil + IlL II y(o)

~ II Gil + IILII y(l) = M.
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Next let t be fixed and let 6) -. 0 with

lim A(t +6)) = lim infA(s)
) -+co s-+t

and set A) = AtH}. Since {II A)II} is bounded, say by y(t + 1), we may assume
that A) -.* A, where AEA. Hence, SA) -. SA in norm. Thus,

y(t) ~ 11,1.11 + t II SAil

~ lim inf{IIA)11 + (t + 6)) liSA) II

= lim A(t + 6)) + (t + 6)) B(t + 6))

= lim y(t +6))

= y(t).

Thus, A(t) ~ IIAII = lim IIA)II = limA(t + 6)) so that

A(t) ~ lim infA(s).
s-+t

Note, as well, that for fJ> 0 we have

A(t + 6) - A(t) = y(t + 6) - y(t) - 6B(t + 6) + t[B(t) - B(t + 6)]

~O

by (24) above. Hence, A is increasing and so continuous from the left.
Consequently, B is contiuous from the left as well.

In the case 1 <p < 00, we know that the extremal measure is unique. If
6]"""-+0 with limj-+coA(t+ 0))= lim sUPs-+tA(s), then subsequence of the
extremal measures {AtH}} must converge weak-* to At as above, by the
uniqueness of At. Hence,

A(t) = lim supA(s) ~ lim supA(s) ~A(t).
s-+t s ....t

For any positive numbers t and 6, we have

y(t + 6) ~ y(t) + 6B(t)

so that

lim sup y(t + fJ) ~ B(t)
s-+co t + fJ
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and hence

lim sup yea) ~ lim inf B(a).
0-+00 a 0-+00

However, B(a) ~ y(a)/a for all a so that

lim inf y(a)/a ~ lim inf B(a).
0-+00 a-+ro

Thus

limit yea) = lim inf B(a) = limit B(a)
0--+00 (J 0 ....00 0-+00

since B is decreasing.
Finally, note that for b >0,

yet + b) - 2y(t) + yet - b) ~ yet) +bB(t) - 2y(t) + yet) - M(t)

=0,

by (24) so that y is concave since y is continuous.

THEOREM 5. Suppose K is starlike with respect to ~. Then

89

y(a)/arln ~ y(r)/rrln,

Proof Let b = r /0' and define

for a ~ r. (25)

Then Ig(z)1 ~ 1 for z E K since K is starlike with respect to ~ and

II g(n) lip ~ (1 - b) IIF~n) lip = (1 - b) a = a - r.

Hence,

yea - r) = y((l - b) a)

~ I g(r)(~)1

= (1 - oyln y(a).

Thus,

y(a - r)/(a - ryln ~ y(a)/arln , a> r,

which is equivalent to (25).
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COROLLARY 6. If I;, = 1 and K is starlike with respect to 1, then

r ~ 1 and 1 <P ~ 00. (26)

Proof Setf(z) = exp[a1/n(z - 1)]; then Ilfll ~ 1 on all of Ll, Ilf(n11lp ~ a
for all p. Hence,

The next theorem treats the case when K has only a finite number of
points and shows a strong contrast to the case just covered.

THEOREM 7. Suppose K has a finite number ofpoints. Then

(i) A =: limu~ooA(a) isfinite.

(ii) B =: limu~ooB(a) is positive.

(iii) O~ [A +aB] -y(a)~O as a~ 00.

(iv) B = inf{IIL,u + GIILP'/HP':,u E A}.

Proof Because K is finite, 1(K) is finite-dimensional. The operator L is
clearly one-to-one on 1(K), again because K is finite, so that L is a
homeomorphism. Thus, the range of L on A is closed and since G is not in
the set L(A), the distance from G to L(A) must be positive; this proves (ii).

To see that (i) holds, suppose that u is any element of C(K) with sup
norm l. If K has N points, there is a polynomial f of degree N - 1 with f = u
on K. Let Pf(z) = L~-l (f(kl(O)/k!) Zk; then

= (pf)(rl(l;,) +f pnlL,uu
T

= (pf)(rl(l;,) +f f(nl(L,uu + G + hu) - f f(nIG.
T T

Each of the three terms above remains bounded as a ~ 00 and hence the
uniform boundedness principle implies that II,uull ~ M for all a; this
proves (i).

Since (i) holds some subsequence of {,uu} converges weak-*, and hence in
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norm since K is finite, to a measure Poo which lies in A and which satisfies
A = IIPool1 and B = IILpoo + Gil. Consequently,

-y(a) ~ -IiPooll- a IILpoo + Gil

y(a) = IIPool1 +a IILpoo + Gil

so that A - A(a) ~ a(B(a) - B) which implies

[A +Ba] - y(a) =A -A(a) +a(B -B(a» ~ 0

and

[A +Ba] - y(a) ~A -A(a) +a(B(a) -B)

~ 2(A -A(a» ~ O.

This establishes (iii). To see that (iv) holds, suppose that AE A and B - 6 =
II LA + G II for some 6 > O. Then

y(a)/a ~ IIAII/a + liLA + Gil

= IIAII/a +B - 6

for all a> O. Let a ~ 00 and use (vi) of Theorem 4 to reach a contradiction.

THEOREM 8. Let K have precisely n points. Then

Fu=Q+aH, for all a> 0, (27)

where .Q is a polynomial of degree n - 1 or less and H is an element of X,
H=: 0 onK.

Proof If K has n points, then A is a singleton, say A = {p}. Hence,

~F(n) _ Isgn(Lp + G + h) ILp + G +hIP'-I,
a u - Isgn(Lp + G + h),

I <p< 00,

p= 00,

for all a. Thus, Fu = Qu +aH, where Qu is a polynomial of degree n - 1 or
less and H vanishes on K. But F

T
= Fu on supp(u) by (14) so that Qu = QT

at n points and hence Qu =: QT =: Q. Thus,

Fu=Q+aH.

COROLLARY 9. If K has precisely n points, then y(a) = A +Ba where
A, B are constants.

Remarks. (1) The polynomial Q in Theorem 8 is the solution to
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extremal problem (2) for a = 0; that is, Q has maximal rth derivative at C;
among all polynomials of degree n - 1 which are bounded by 1 in modulus
on K. Furthermore, H is the solution of the extremal problem described by
maximizing h(r)(c;) under the restrictions that II h(n) lip = 1 and h = 0 on the
setK.

(2) The case when K is finite constrasts strongly with the case when
say, K=A. In the former case, the growth of y(a) is basically the same for
all rand n (the constants A and B depend on rand n, however), whereas in
the latter case, the growth of y(a) is basically (Jrln and thus depends quite
directly on rand n.

EXAMPLE 10. Let us take n to be 3, K = {1, A, A21 where A= exp [2ni/3 ]
and C; = 1. Then by Theorem 8,

where Q is a polynomial of degree 2, H = 0 on K, and II H(3) lip = 1. Q must
be the unique polynomial of degree 2 which is bounded by 1 in modulus on
K and which has maximal rth derivative at I among all such polynomials.
First consider the case r = 1. Here the unique element J1.1 of A has weights 1,
,.1,(1-,.1,)-1, and (,.1,-1)-1 at 1,,.1,, and ,.1,2, respectively. Let QI(Z) be defined
by

Then IQII = 1 on K and, indeed,

QI(A k )J1.I({Ak l) = 1,u1({Akl)l, k = 0,1,2,

so that QI is the extremal polynomial for r = 1.
Next consider the case r = 2. The unique element,u2 of A has weights 2/3,

(-2/3)(1 +,.1,2), and (2/3)(,.1,2) at 1, A, and ,.1,2 respectively, and

QZ<z) = Z2

is the extremal polynomial for r = 2. It follows that for all p, 1 <p ::;; 00, and
all (J ~ 0, the extremal function for r = 1 is not the same as the extremal
function for r = 2.

When p = 2, the best H~ approximation to L,u + G is zero. Hence,

where c is a constant selected so that IIB(3) 112 = 1. A computation of the
Fourier coefficients of ,Ill and then of J1.2 yields, for r = 1 and r = 2,

(28)
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and

Hfl(e i8 ) = c2[-2g2(e i8 ) +Giei8 )], (29)

where

OCJ

g I(e i8 ) = 2.: [(3k + 1)!/(3k +4)!] e(3k+ l)i8, (30)
0

OCJ

g2(ei8 ) = 2.: [(3k +2)!/(3k +5)!] e(3k+2li8, (31 )
0

and

OCJ

GI(e
i8 ) = 2.: [k!/(k + 2)!] eik8, (32)

0

OCJ

G2(e
i8 ) = 2.: [k!/(k + I)!] eik8 . (33)

0

Note that

(Z3gl »1II =Z(I- Z3)-I,

(Z3g2(Z»1II = z2(1 - Z3)-J,

which shows that gl' g2 have analytic extensions to the complex plane with
the three rays {tA.k:t~ I}, k=O, 1,2, deleted. As well, G) and G2 have
analytic extensions to the complex plane with the ray {t: t ~ I} deleted.
Formulas (28}-(33) completely describe HI and H 2 along with the fact that
HI and H 2 both vanish on K.

3. PROPERTIES OF Fa

We begin by analyzing the operator L given in (8).

PROPOSITION 11. Let L be defined on 1(K) by

(Lp)(e i8 ) = - f: (j!/U + n)!) 15 zi+ ndp(z) I e-ij8. (34)
J=O K \

Then

(Lp)(e i8 ) = - ein8 5M n(ze- i8 ) dp(z),
K

(35)
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ct:)

Mn(w) =: L (j!/(j + n)! ~+n,
j=o

Iwl::;; 1, (36)

and

An = (-IY/(n - I)!, (37)

0,

B = n-l

n - L Ifj,
1

n = 1,

n,?2.
(38)

Proof Formula (35) is of course only a rewriting of (34). Note that for
n '? 2 and Iwi < 1 we have

\
'x::, 1 .

M 1(w) = "-~+1 w'+ 1 = -log(1 - w),
o J

Formulas (36}-(38) now follow by computation.

COROLLARY 12. The function of' given by

Iwl < 1.

extends (LIl)(e iIJ ) to be holomorphic on the sphere except on the union of the
line segments from the origin to the points of supp(.u).

Proof For z E K, the function Mn(z/') is holomorphic on the sphere
except the line segment from' =0 to ,= z. The conclusion now follows by
integration.

THEOREM 13. Let a be an open arc of the unit circle T which contains
no point of K U {<;}. If 1 <p < 00, then F0 extends holomorphically across a.

Proof Let A be a point of the arc a. According to Corollary 12 Lllo
extends holomorphically to a neighborhood of A. Further, using the notation
of Proposition 11, G is actually ei(n-r)1J Mn_r(ee- ilJ ) so that G is also
holomorphic in a neighborhood of A. Now (15) and (16)(b) and standard
facts from function theory (see [1]) imply that F~n) has an analytic extension
across T near A and hence the same holds for Fo'
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COROLLARY 14. If KU {~} cLfo' then Fa extends to be holomorphic in
{z: Iz I<R} for some R > 1. If P = 00, then (l/a) F~n) is a finite Blaschke
product.

Proof The only conclusion yet to be proved is the case when p = 00.

Here, Lf.la + G extends to be holomorphic on {z: Izl > to} for some to < 1. If
Lf.la+ G + ha = 0 on any set of positive measure in T, then Lf.la + G + ha
vanishes identically on T, which leads to a contradiction as in the proof of
Theorem 1. Hence, Lf.la+ G + ha *' 0 a.e. dO. It now follows from (16)(a)
and standard facts from function theory (see [1]) that F~n) extends
holomorphically across all of T and thus (l/a)F~n) is a finite Blaschke
product.

Remark. Example 10 shows that in general Theorem 13 is the best to be
expected since there, in the case p = 2, Fa does not extend to holomorphic
over T at any of the points of K while, of course, it does extend
holomorphically acoss all other points of T.

PROPOSITION 15. Let K = ,1, ~ = 1, and 1 <P ~ 00, a> O. If Fa is not a
monomial in z and ifIF~)(A)1 = y(a)for some A ELf, then A is a root of unity.

Proof Define v to be y(a)/F~)(A) and G(z) by

z ELf.

Then IG(z)l~ Ion ,1, IIG(n)llp~a, and G(r)(1) = y(a). Thus, G(z) = FaCz )
and so

Since Fa is not a monomial, there are at least two such values of k and the
proposition follows. (Note that for p = 2, Fa is certainly not a monomial.)

Final remarks. (1) Clearly norms other than the sup norm over K
could be imposed on f in defining the basic problem. I chose the sup norm
on K for its interest and ease of formulation.

(2) It is also clear that the basic extremal problem could be
formulated on a general planar domain .0, rather than just on the unit
disc ,1 o' When .0 is bounded by a finite number of disjoint smooth simple
closed curves, the conclusions would be expected to follow the pattern
presented here. The case of an arbitrary domain .0 is far too complex and
even the solutions of simpler extremal problems are not well understood in
this context.

(3) The case p = 1 is not handled here because if r = n - 1 and if
I~I = 1, then G is not bounded and hence Lf.l + G is not in L oo • If 0 < r <
n - 1 or if r = n - 1 and I~I < 1, then uniqueness of the extremal function
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and the analysis of the growth of y(a, 1) go through as above. If p = 1,
r = n - 1, and I~ I= 1, then G must be replaced by a jump function (with
jump at ~). However, the analysis can be altered to fit this case and again
there is only one extremal function and the behavior of y(a, 1) is like that
described for 1 <P ~ 00.
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