A Holomorphic Version of Landau's Theorem

Stephen D. Fisher *
Department of Mathematics, Northwestern University, Evanston, Illinois 60201, U.S.A.
Communicated by Oved Shisha

Received November 10, 1983

Introduction

In this paper I consider variations on a theme of Edmund Landau: namely, if a function and its nth derivative ($n \geqslant 2$) are bounded, say on the real line, then so are all the intermediate derivatives and bounds can be obtained relating the size of the r th derivative, $0<r<n$, to those of the 0 th and nth derivatives; further, the function which has the largest r th derivative is (essentially) unique and possesses a number of interesting properties. See [2] for references to Landau's work.

The problems considered here are modifications of the following. Let Δ_{0} be the open unit disc in the complex plane, let n be an integer $\geqslant 2$, let $r \in\{1, \ldots, n-1\}$, let K be a compact subset of $\Delta=\{z:|z| \leqslant 1\}$ with n or more points and let σ be a positive number. The problem is to find among those functions f which are holomorphic on Δ_{0} and which satisfy

$$
\begin{array}{r}
\max \{|f(z)|: z \in K\} \leqslant 1, \\
\sup _{z \in \Delta_{0}}\left|f^{(n)}(z)\right| \leqslant \sigma, \tag{1}
\end{array}
$$

one for which

$$
\begin{equation*}
\max _{z \in \Delta}\left|f^{(r)}(z)\right| \tag{2}
\end{equation*}
$$

is as large as possible. Since $f^{(r)}$ is continuous on Δ, the problem above is equivalent to this one. Let $\xi \in \partial \Delta=T=\{|z|=1\}$ be fixed. Find those functions F satisfying (1), for which $\left|F^{(r)}(\xi)\right|$ equals

$$
\gamma(\sigma)=: \max \left\{\left|f^{(r)}(\xi)\right|: f \text { satisfies }(1)\right\} .
$$

Of course, γ depends on K, ξ, n and r, as well as σ, but I suppress this

* Research supported in part by grants from the National Science Foundation.
dependence in my notation. Before proceeding to analyze the solutions of this extremal problem, I will generalize it slightly. Let $1<p \leqslant \infty$, and let H^{p} be the usual Hardy space of functions on Δ_{0}; see [1], for example. With n, r and σ as above, and with ξ any point of Δ which is not in the interior of the convex hull of K, the new extremal problem is this: find among those functions, holomorphic in Δ_{0} and satisfying

$$
\begin{gather*}
\max _{z \in K}|f(z)| \leqslant 1, \\
f^{(n)} \in H^{p} \quad \text { and } \quad\left\|f^{(n)}\right\|_{p} \leqslant \sigma
\end{gather*}
$$

one for which $\left|f^{(r)}(\xi)\right|$ is as large as possible. The subscript p in (1^{\prime}) refers to the H^{p} norm of $f^{(n)}$. Let $\gamma(\sigma, p)$ denote this maximum:

$$
\begin{equation*}
\gamma(\sigma, p)=: \max \left\{\left|f^{(r)}(\xi)\right|: f \text { satisfies }\left(1^{\prime}\right)\right\} \tag{3}
\end{equation*}
$$

so that $\gamma(\sigma, \infty)=\gamma(\sigma)$. Any function F satisfying (1') for which $F^{(r)}(\xi)=\gamma(\sigma, p)$ will be termed extremal. A simple normal families argument shows that there is at least one extremal function. I shall show in Section 1 that there is precisely one extremal function. In Section 2 I analyze the growth of $\gamma(\sigma, p)$, as a function of σ, when $\sigma \rightarrow \infty$, in relation to the set K. Finally, in Section 3, I describe a few properties of the extremal function.

1. Uniqueness

Define X to be those holomorphic functions f on Δ_{0} for which $f^{(n)} \in H^{p}$, and define a norm on X by

$$
\begin{equation*}
\|f\|=\max \left\{\|f\|_{K}, \frac{1}{\sigma}\left\|f^{(n)}\right\|_{p}\right\} \tag{4}
\end{equation*}
$$

where

$$
\|f\|_{K}=\max \{|f(z)|: z \in K\}
$$

With this norm, X is a Banach space and the functions satisfying (1^{\prime}) are precisely the unit ball of X. Hence, $\gamma(\sigma, p)$ is the norm of the linear functional on X given by $l_{0}(f)=f^{(r)}(\xi)$. The extremal problem is then to determine the norm of this functional l_{0} and to find those elements of X at which l_{0} attains its norm. X is a closed subspace of the Banach space Y consisting of the direct sum of $C(K)$ and L^{p} with norm

$$
\|(u, g)\|=\max \left\{\|u\|_{K}, \frac{1}{\sigma}\|g\|_{p}\right\}
$$

when we make the usual identification of H^{p} with the closed subspace of $L^{p}=L^{p}(T, d \theta)$ consisting of those functions whose negative Fourier coefficients vanish; see [1]. The dual space of Y is the direct sum of $\mathscr{M}(K)$, the finite regular Borel measures on K, and $L^{p^{\prime}}$, where p^{\prime} is the conjugate exponent of p, with the norm

$$
\begin{equation*}
\|(\mu, h)\|=\|\mu\|+\sigma\|h\|_{p^{\prime}} . \tag{5}
\end{equation*}
$$

Basic duality for Banach spaces then implies

$$
\begin{align*}
\gamma(\sigma, p) & =\inf \left\{\|l\|: l \in Y^{*}, l=l_{0} \text { on } X\right\} \\
& =\inf \left\{\left\|l_{0}+m\right\|: m \in Y^{*}, m \perp X\right\} . \tag{6}
\end{align*}
$$

Now if $f \in X$, then $f(z)=\sum_{j=0}^{\infty} a_{j} z^{j}$ for $z \in \Delta$ and so

$$
\begin{aligned}
l_{0}(f) & =f^{(r)}(\xi) \\
& =\sum_{s=r}^{\infty} a_{s} \frac{s!}{(s-r)!} \xi^{s-r} \\
& =\sum_{s=r}^{n-1} a_{s} \frac{s!}{(s-r)!} \xi^{s-r}+\int_{T} f^{(n)}\left(e^{i \theta}\right) G\left(e^{i \theta}\right) d \theta
\end{aligned}
$$

where

$$
\begin{equation*}
G\left(e^{i \theta}\right)=\sum_{j=0}^{\infty} \frac{j!}{(j+n-r)!} \xi^{j+n-r} e^{-i j \theta} \tag{7}
\end{equation*}
$$

Note that G lies in L^{p} for all finite p, even if $r=n-1$ and $|\xi|=1$. If μ is a measure on K, define

$$
\begin{equation*}
(L \mu)\left(e^{i \theta}\right)=:-\sum_{0}^{\infty} \frac{j!}{(j+n)!}\left\{\int_{K} z^{j+n} d \mu(z)\right\} e^{-i j \theta} \tag{8}
\end{equation*}
$$

There are two immediate consequences of (8). The first is that each pair $(\mu, v) \in Y^{*}$ which annihilates X has the form $(\mu, L \mu+h)$ where $h \in H_{0}^{p^{\prime}}$, and μ satisfies

$$
\begin{equation*}
\int_{K} z^{s} d \mu(z)=0 \quad \text { for } \quad s=0, \ldots, n-1 \tag{9}
\end{equation*}
$$

($H_{0}^{p^{\prime}}$ consists of those $H^{p^{\prime}}$ functions with mean-value zero.) The second is that if

$$
\int_{K} z^{s} d \mu(z)= \begin{cases}0, & 0 \leqslant s<r \tag{10}\\ \frac{s!}{(s-r)!} \xi^{s-r}, & r \leqslant s \leqslant n-1\end{cases}
$$

then

$$
\begin{align*}
\int_{K} f d \mu+\int_{T} f^{(n)}(L \mu+G) d \theta & =\sum_{s=r}^{\infty} a_{s} \frac{s!}{(s-r)!} \xi^{s-r}, \quad f \in X \tag{11}\\
& =f^{(r)}(\xi)
\end{align*}
$$

Set

$$
\begin{equation*}
\Lambda=\{\mu \in \mathscr{M}(K):(10) \text { holds }\} . \tag{12}
\end{equation*}
$$

Then formulas (5)-(7), (9)-(11) imply the important relation

$$
\begin{equation*}
\gamma(\sigma, p)=\inf \left\{\|\mu\|_{\mu}+\sigma\|G+L \mu\|_{L^{p^{\prime}} / H_{0}^{p^{\prime}}}: \mu \in \Lambda\right\} . \tag{13}
\end{equation*}
$$

Here $L^{p^{\prime}} / H_{0}^{p^{\prime}}$ is the usual quotient space of $L^{p^{\prime}}$ by $H_{0}^{p^{\prime}}$. Formula (13) will be the basis for much of what follows.

The linear transformation L carries $\mathscr{N}(K)$ into $C(T)$ and is continuous from the weak-* topology to the norm topology since $n \geqslant 2$. It follows from this and from the fact that the unit ball of $H_{0}^{p^{\prime}}$ is weakly compact for $1<p^{\prime}<\infty$ and weak-* compact in $\mathscr{M}(T)$ if $p^{\prime}=1$, that for each $\sigma>0$ there is at least one measure $\mu_{\sigma} \in \Lambda$ and at least one $h_{\sigma} \in H_{0}^{p^{\prime}}$ for which equality holds in (13):

$$
\gamma(\sigma, p)=\left\|\mu_{\sigma}\right\|_{\nsim}+\sigma\left\|L \mu_{\sigma}+G+h_{\sigma}\right\|_{p^{\prime}}
$$

Now let F_{σ} be an extremal function. Then

$$
\begin{aligned}
\gamma(\sigma, p) & =F_{\sigma}^{(r)}(\xi) \\
& =\int_{K} F_{\sigma} d \mu_{\sigma}+\int_{T} F_{\sigma}^{(n)}\left(L \mu_{\sigma}+G+h_{\sigma}\right) d \theta \\
& \leqslant\left\|\mu_{\sigma}\right\|+\sigma\left\|L \mu_{\sigma}+G+h_{\sigma}\right\|_{p^{\prime}} \\
& =\gamma(\sigma, p) .
\end{aligned}
$$

Consequently, equality holds throughout and we learn that
(a) $\left|F_{\sigma}\right|=1$ on $\operatorname{supp}\left(\mu_{0}\right)$,
(b) $F_{\sigma} d \mu_{\sigma}$ is a non-negative measure.

Further,

$$
\begin{equation*}
F_{\sigma}^{(n)}\left(L \mu_{\sigma}+G+h_{\sigma}\right) \geqslant 0 \quad \text { a.e. } d \theta \tag{15}
\end{equation*}
$$

and

$$
\begin{align*}
& \text { (a) }\left|F_{\sigma}^{(n)}\right|=1 \quad \text { a.e. } d \theta \text { where } L \mu_{\sigma}+G+h_{\sigma} \neq 0 \text { if } p=\infty, \\
& \text { (b) }\left|F_{\sigma}^{(n)}\right|^{p}=c\left|L \mu_{\sigma}+G+h_{\sigma}\right|^{p^{\prime}} \quad \text { a.e. } d \theta \text { if } 1<p<\infty, \tag{16}
\end{align*}
$$

where $c=\sigma^{p} /\left\|L \mu_{\sigma}+G+h_{\sigma}\right\|^{p^{\prime}}$.
In (16)(a) if $L \mu_{\sigma}+G+h_{\sigma}=0$ a.e. $d \theta$, then $L \mu_{\sigma}+G=0$ a.e. $d \theta$ since $L \mu_{\sigma}+G$ is the conjugate of an element of H^{2}. However, this would imply that

$$
\int_{K} z^{j+n} d \mu_{\sigma}(z)=\frac{(j+n)!}{(j+n-r)!} \xi^{j+n-r} \quad \text { for } \quad j=0,1, \ldots
$$

so that

$$
\begin{equation*}
\int_{K} f d \mu_{\sigma}=f^{(r)}(\xi) \quad \text { for all } f \in X \tag{17}
\end{equation*}
$$

and, in particular, for all functions holomorphic in a neighborhood of Δ. Since ξ does not lie in the interior of the convex hull of K, there is a sequence $\left\{f_{n}\right\}$ of polynomials for which $f_{n} \rightarrow 0$ uniformly on K but $\left|f_{n}^{(r)}(\xi)\right| \rightarrow \infty$, a contradiction to (17). Thus, $L \mu_{\sigma}+G+h_{\sigma} \neq 0$ on a set \mathscr{E} of positive Lebesgue measure in T. If H is another extremal function, then so is $\frac{1}{2}\left(F_{\sigma}+H\right)$ and so all the conclusions in (14), (15), (16) apply to H and to $\frac{1}{2}\left(F_{\sigma}+H\right)$. Thus $F_{\sigma}^{(n)}=H^{(n)}$ a.e. on T if $1<p<\infty$ by (15) or $F_{\sigma}^{(n)}=H^{(n)}$ a.e. on \mathscr{E} if $p=\infty$ by (16), and hence $F_{\sigma}^{(n)}=H^{(n)}$ a.e. on T. In either case, $F_{\sigma}-H$ is a polynomial of degree $n-1$ or less. However, (14)(a) implies $F_{\sigma}=H$ on the support of μ_{σ}. I show below that μ_{σ} has n or more points in its support; this implies immediately that $F_{\sigma} \equiv H$. To see that μ_{σ} has n or more points in its support, note that $\int p d \mu_{\sigma}=p^{(r)}(\xi)$ for all polynomials p of degree $n-1$ or less. If $\operatorname{supp}\left(\mu_{\sigma}\right)=\left\{\zeta_{1}, \ldots, \zeta_{s}\right\}$, where $s \leqslant n-1$, set $P(z)=\prod_{1}^{s}\left(z-\zeta_{j}\right)$. Then $P=0$ on support μ_{σ} but $P^{(r)}(\xi) \neq 0$ by the Gauss-Lucas theorem (recall ξ does not lie in the interior of the convex hull of K). This completes the proof of uniqueness.

I summarize the results of this section.

Theorem 1. There is precisely one function F satisfying (1') with

$$
F^{(r)}(\xi)=\max \left\{\left|f^{(r)}(\xi)\right|: f \text { satisfies }\left(1^{\prime}\right)\right\} .
$$

Corollary 2. Suppose K is symmetric with respect to the real axis and ξ is real. Then F_{σ} is real on the real axis.

Proof: $\mathbf{G}(\mathbf{z})=F_{\boldsymbol{\sigma}}(\bar{z})$ is another extremal function and hence coincides with F_{σ}.

$$
\text { 2. The dependence of } \gamma(\sigma) \text { on } \sigma \text { and } K
$$

I begin with a look at the measure μ_{σ}.
Definition. Let $p \in(1, \infty]$ be fixed. A measure $\mu \in \Lambda$ for which equality holds in (13) will be termed extremal. That is, μ is extremal if

$$
\int_{K} z^{s} d \mu(z)= \begin{cases}0, & 0 \leqslant s<r \tag{18}\\ \frac{s!}{(s-r)!} \xi^{s-r}, & r \leqslant s<n\end{cases}
$$

and

$$
\begin{equation*}
\gamma(\sigma, \mathrm{P})=\|\mu\|+\sigma\|L \mu+G\|_{L^{p^{\prime}} / H_{0}^{p^{\prime}}} \tag{19}
\end{equation*}
$$

$\mathrm{P}_{\text {roposition }}$ 3. If $1<p<\infty$, then there is precisely one extremal measure.

Proof: Let μ and v be extremal measures. Then $\beta=\frac{1}{2}(\mu+v)$ lies in Λ so that

$$
\begin{aligned}
\gamma(\sigma, p) & \leqslant\|\beta\|+\sigma\|L \beta+G\| \\
& \leqslant \frac{1}{2}\|\mu\|+\frac{1}{2}\|v\|+\frac{1}{2} \sigma\|L \mu+G\|+\frac{1}{2} \sigma\|L v+G\| \\
& =\gamma(\sigma, p) .
\end{aligned}
$$

Hence, because $L^{p^{\prime}} / H_{0}^{p^{\prime}}$ is uniformly convex,

$$
\begin{equation*}
L \mu+G=L v+G, \quad \bmod H_{0}^{p^{\prime}} \tag{20}
\end{equation*}
$$

Now $\boldsymbol{L \mu} \boldsymbol{+} \mathbf{G}$ and $\mathbf{L v}+\mathbf{G}$ both are the complex conjugates of $\boldsymbol{H}^{\mathbf{2}}$ functions so (20) implies that $L \boldsymbol{L}=\mathbf{L v}$. Thus,

$$
\begin{equation*}
\int_{K} z^{j} d \mu(z)=\int_{K} z^{j} d v(z), \quad j=0,1,2, \ldots \tag{21}
\end{equation*}
$$

Hence, $\mu-\mathrm{v}$ is orthogonal to all functions analytic on $\boldsymbol{\Delta}$. But $F_{\sigma} d \mu$ and $F_{\sigma} d v$ are both non-negative measures so that the real measure $F_{\sigma}(d \mu-\mathrm{dv})$ is
orthogonal to z^{j} for $j=0,1,2, \ldots$ Thus, this measure must vanish and so $\mu=v$. (We note parenthetically here that any extremal measure μ is supported on the outer boundary of K since $\left|F_{o}\right|=1$ on $\operatorname{supp}(\mu)$ and $1 \geqslant|F|$ on K.)

Remark. In the case when K is symmetric with respect to the real axis it is not difficult to show that for $1<p<\infty$ the (unique) extremal measure μ_{σ} is also symmetric with respect to the real axis in the sense that the μ_{σ} measure of a set E in K is the complex conjugate of the μ_{σ}-measure of the set $\{\bar{z}: z \in E\}$.

We now investigate how $\gamma(\sigma)$ behaves as a function of σ. Recall formula (12):

$$
\gamma(\sigma, p)=\inf \left\{\|\mu\|+\sigma\|S \mu\|_{\left.L^{p^{\prime}} / H_{0}^{p^{\prime}}: \mu \in \Lambda\right\}, ~}\right.
$$

where

$$
\begin{aligned}
S \mu=: L \mu+G= & \sum_{j=0}^{\infty} \frac{j!}{(j+n)}\left\{\int_{K} z^{j+n} d \mu(z)\right\} e^{-i j \theta} \\
& +\sum_{j=0}^{\infty} \frac{j!}{(j+n-r)!} \xi^{j+n-r} e^{-i j \theta}
\end{aligned}
$$

and

$$
\Lambda=\left\{\mu \in \mathscr{M}(K): \int z^{s} d \mu(z)\right\}= \begin{cases}0, & 0 \leqslant s<r \\ \frac{s!}{(s-r)!} \xi^{s}, & r \leqslant s \leqslant n-1\end{cases}
$$

Note that $S\left(t \mu_{1}+(1-t) \mu_{2}\right)=t S \mu_{1}+(1-t) S \mu_{2}$ for any $t \in \mathbb{R}$ and that Λ is a convex set. Note further that S is continuous from Λ with the weak-* topology into $L^{p^{\prime}}$ for $1 \leqslant p^{\prime} \leqslant \infty$. I now write $\gamma(\sigma)$ for $\gamma(\sigma, p), p$ being fixed. As well, I shall drop the subscript $L^{p^{\prime}} / H_{0}^{p^{\prime}}$ on the norm of $S \mu$. Define

$$
\begin{gather*}
A(\sigma)=\inf \{\|\mu\|: \mu \in \Lambda \text { and } \gamma(\sigma)=\|\mu\|+\sigma\|S \mu\|\}, \tag{22}\\
B(\sigma)=\frac{1}{\sigma}[\gamma(\sigma)-A(\sigma)] . \tag{23}
\end{gather*}
$$

When $1<p<\infty, A(\sigma)=\left\|\mu_{\sigma}\right\|$ since the extremal measure is unique; when $p=\infty, A(\sigma)$ is the smallest variation of any extremal measure.

Theorem 4. (i) $\gamma(\sigma)$ and $A(\sigma)$ are increasing functions of σ and $B(\sigma)$ is a decreasing function of σ.
(ii) $\gamma(\sigma)$ is continuous and is in Lip 1 .
(iii) If $1<p<\infty$, then A and B are continuous and γ is differentiable with $\gamma^{\prime}(\sigma)=B(\sigma)$.
(iv) If $p=\infty$, then A and B are left continuous and γ is left differentiable with left derivative equal to $B(\sigma)$.
(v) γ is concave down.
(vi) $\lim _{\sigma \rightarrow \infty} \gamma(\sigma) / \sigma$ exists and equals $\lim _{\sigma \rightarrow \infty} B(\sigma)$.

Proof. For each $t>0$ there is a $\lambda_{t} \in \Lambda$ with $A(t)=\left\|\lambda_{t}\right\|$ and $\gamma(t)=$ $\left\|\lambda_{t}\right\|+t\left\|S \lambda_{t}\right\|$. If $\delta>0$, then

$$
\begin{aligned}
\gamma(t) & \leqslant\left\|\lambda_{t+\delta}\right\|+t\left\|S \lambda_{t+\delta}\right\| \\
& <\left\|\lambda_{t+\delta}\right\|+(t+\delta)\left\|S \lambda_{t+\delta}\right\| \\
& =\gamma(t+\delta) .
\end{aligned}
$$

Hence, γ is increasing. For any real number δ, we have

$$
\begin{aligned}
\gamma(t) & \leqslant\left\|\lambda_{t+\delta}\right\|+t\left\|S \lambda_{t+\delta}\right\| \\
& =\gamma(t+\delta)-\delta\left\|S \lambda_{t+\delta}\right\|
\end{aligned}
$$

and

$$
\begin{aligned}
\gamma(t+\delta) & \leqslant\left\|\lambda_{t}\right\|+(t+\delta)\left\|S \lambda_{t}\right\| \\
& =\gamma(t)+\delta\left\|S \lambda_{t}\right\|
\end{aligned}
$$

so that

$$
\begin{equation*}
B(t+\delta) \leqslant(\gamma(t+\delta)-\gamma(t)) / \delta \leqslant B(t), \quad \delta>0 \tag{24}
\end{equation*}
$$

and the reverse inequalities if $\delta<0$. This shows B is decreasing. Once B is shown to be continuous (or left-continuous) then (24) will show γ is differentiable (or left-differentiable) with derivative equal to $B(\sigma)$.

The inequality

$$
\gamma(t+\delta) \leqslant \gamma(t)+\delta\left\|S \lambda_{t}\right\|
$$

derived above implies that

$$
|\gamma(\sigma)-\gamma(\tau)| \leqslant|\sigma-\tau| M, \quad \sigma, \tau>0
$$

where $M=\max _{\sigma} B(\sigma)$. We note that $B(\sigma)$ is bounded for $\sigma \leqslant 1$ and hence all σ since

$$
\begin{aligned}
B(\sigma) & =\left\|L \mu_{\sigma}+G\right\| \leqslant\|G\|+\|L\|\left\|\mu_{\sigma}\right\| \\
& \leqslant\|G\|+\|L\| \gamma(\sigma) \\
& \leqslant\|G\|+\|L\| \gamma(1)=M .
\end{aligned}
$$

Next let t be fixed and let $\delta_{j} \rightarrow 0$ with

$$
\lim _{j \rightarrow \infty} A\left(t+\delta_{j}\right)=\liminf _{s \rightarrow t} A(s)
$$

and set $\lambda_{j}=\lambda_{t+\delta_{j}}$. Since $\left\{\left\|\lambda_{j}\right\|\right\}$ is bounded, say by $\gamma(t+1)$, we may assume that $\lambda_{j} \rightarrow^{*} \lambda$, where $\lambda \in \Lambda$. Hence, $S \lambda_{j} \rightarrow S \lambda$ in norm. Thus,

$$
\begin{aligned}
\gamma(t) & \leqslant\|\lambda\|+t\|S \lambda\| \\
& \leqslant \lim \inf \left\{\left\|\lambda_{j}\right\|+\left(t+\delta_{j}\right)\left\|S \lambda_{j}\right\|\right. \\
& =\lim A\left(t+\delta_{j}\right)+\left(t+\delta_{j}\right) B\left(t+\delta_{j}\right) \\
& =\lim \gamma\left(t+\delta_{j}\right) \\
& =\gamma(t)
\end{aligned}
$$

Thus, $A(t) \leqslant\|\lambda\|=\lim \left\|\lambda_{j}\right\|=\lim A\left(t+\delta_{j}\right)$ so that

$$
A(t) \leqslant \liminf _{s \rightarrow t} A(s) .
$$

Note, as well, that for $\delta>0$ we have

$$
\begin{aligned}
A(t+\delta)-A(t) & =\gamma(t+\delta)-\gamma(t)-\delta B(t+\delta)+t[B(t)-B(t+\delta)] \\
& \geqslant 0
\end{aligned}
$$

by (24) above. Hence, A is increasing and so continuous from the left. Consequently, B is contiuous from the left as well.

In the case $1<p<\infty$, we know that the extremal measure is unique. If $\delta_{j} \rightarrow 0$ with $\lim _{j \rightarrow \infty} A\left(t+\delta_{j}\right)=\lim \sup _{s \rightarrow t} A(s)$, then subsequence of the extremal measures $\left\{\lambda_{t+\delta_{j}}\right\}$ must converge weak-* to λ_{t} as above, by the uniqueness of λ_{t}. Hence,

$$
A(t)=\lim _{s \rightarrow t} A(s) \geqslant \lim _{s \rightarrow t} \sup A(s) \geqslant A(t) .
$$

For any positive numbers t and δ, we have

$$
\gamma(t+\delta) \leqslant \gamma(t)+\delta B(t)
$$

so that

$$
\limsup _{\delta \rightarrow \infty} \frac{\gamma(t+\delta)}{t+\delta} \leqslant B(t)
$$

and hence

$$
\limsup _{\sigma \rightarrow \infty} \frac{\gamma(\sigma)}{\sigma} \leqslant \liminf _{\sigma \rightarrow \infty} B(\sigma) .
$$

However, $B(\sigma) \leqslant \gamma(\sigma) / \sigma$ for all σ so that

$$
\liminf _{\sigma \rightarrow \infty} \gamma(\sigma) / \sigma \geqslant \underset{\sigma \rightarrow \infty}{\lim \inf } B(\sigma)
$$

Thus

$$
\operatorname{limit}_{\sigma \rightarrow \infty} \frac{\gamma(\sigma)}{\sigma}=\liminf _{\sigma \rightarrow \infty} B(\sigma)=\operatorname{limit}_{\sigma \rightarrow \infty} B(\sigma)
$$

since B is decreasing.
Finally, note that for $\delta>0$,

$$
\begin{aligned}
\gamma(t+\delta)-2 \gamma(t)+\gamma(t-\delta) & \leqslant \gamma(t)+\delta B(t)-2 \gamma(t)+\gamma(t)-\delta B(t) \\
& =0
\end{aligned}
$$

by (24) so that γ is concave since γ is continuous.
Theorem 5. Suppose K is starlike with respect to ξ. Then

$$
\begin{equation*}
\gamma(\sigma) / \sigma^{r / n} \leqslant \gamma(\tau) / \tau^{r / n}, \quad \text { for } \quad \sigma \geqslant \tau \tag{25}
\end{equation*}
$$

Proof. Let $\delta=\tau / \sigma$ and define

$$
g(z)=F_{o}\left((1-\delta)^{1 / n} z+\left(1-(1-\delta)^{1 / n}\right) \xi\right), \quad z \in \Delta
$$

Then $|g(z)| \leqslant 1$ for $z \in K$ since K is starlike with respect to ξ and

$$
\left\|g^{(n)}\right\|_{p} \leqslant(1-\delta)\left\|F_{\sigma}^{(n)}\right\|_{p}=(1-\delta) \sigma=\sigma-\tau
$$

Hence,

$$
\begin{aligned}
\gamma(\sigma-\tau) & =\gamma((1-\delta) \sigma) \\
& \geqslant\left|g^{(r)}(\xi)\right| \\
& =(1-\delta)^{r / n} \gamma(\sigma)
\end{aligned}
$$

Thus,

$$
\gamma(\sigma-\tau) /(\sigma-\tau)^{r / n} \geqslant \gamma(\sigma) / \sigma^{r / n}, \quad \sigma>\tau
$$

which is equivalent to (25).

Corollary 6. If $\xi=1$ and K is starlike with respect to 1 , then

$$
\begin{equation*}
\sigma^{r / n} \leqslant \gamma(\sigma) \leqslant \gamma(1) \sigma^{r / n}, \quad r \geqslant 1 \quad \text { and } \quad 1<p \leqslant \infty \tag{26}
\end{equation*}
$$

Proof. Set $f(z)=\exp \left[\sigma^{1 / n}(z-1)\right]$; then $\|f\| \leqslant 1$ on all of $\Delta,\left\|f^{(n)}\right\|_{p} \leqslant \sigma$ for all p. Hence,

$$
\gamma(\sigma) \geqslant\left|f^{(r)}(1)\right|=\sigma^{r / n} .
$$

The next theorem treats the case when K has only a finite number of points and shows a strong contrast to the case just covered.

Theorem 7. Suppose K has a finite number of points. Then
(i) $A=: \lim _{\sigma \rightarrow \infty} A(\sigma)$ is finite.
(ii) $B=: \lim _{\sigma \rightarrow \infty} B(\sigma)$ is positive.
(iii) $0 \leqslant[A+\sigma B]-\gamma(\sigma) \rightarrow 0$ as $\sigma \rightarrow \infty$.
(iv) $B=\inf \left\{\|L \mu+G\|_{L^{p^{\prime} / H^{p}}}: \mu \in \Lambda\right\}$.

Proof. Because K is finite, $\mathscr{N}(K)$ is finite-dimensional. The operator L is clearly one-to-one on $\mathscr{M}(K)$, again because K is finite, so that L is a homeomorphism. Thus, the range of L on Λ is closed and since G is not in the set $L(\Lambda)$, the distance from G to $L(\Lambda)$ must be positive; this proves (ii).

To see that (i) holds, suppose that u is any element of $C(K)$ with sup norm 1. If K has N points, there is a polynomial f of degree $N-1$ with $f=u$ on K. Let $P f(z)=\sum_{0}^{n-1}\left(f^{(k)}(0) / k!\right) z^{k}$; then

$$
\begin{aligned}
\int_{K} u d \mu_{\sigma} & =\int_{K} f d \mu_{0} \\
& =\int_{K} P f d \mu_{\sigma}+\int_{K}(f-P f) d \mu_{\sigma} \\
& =(P f)^{(r)}(\xi)+\int_{T} f^{(n)} L \mu_{\sigma} \\
& =(P f)^{(r)}(\xi)+\int_{T} f^{(n)}\left(L \mu_{\sigma}+G+h_{\sigma}\right)-\int_{T} f^{(n)} G
\end{aligned}
$$

Each of the three terms above remains bounded as $\sigma \rightarrow \infty$ and hence the uniform boundedness principle implies that $\left\|\mu_{\sigma}\right\| \leqslant M$ for all σ; this proves (i).

Since (i) holds some subsequence of $\left\{\mu_{\sigma}\right\}$ converges weak-*, and hence in
norm since K is finite, to a measure μ_{∞} which lies in Λ and which satisfies $A=\left\|\mu_{\infty}\right\|$ and $B=\left\|L \mu_{\infty}+G\right\|$. Consequently,

$$
\begin{gathered}
-\gamma(\sigma) \geqslant-\left\|\mu_{\infty}\right\|-\sigma\left\|L \mu_{\infty}+G\right\| \\
\gamma(\sigma)=\left\|\mu_{\infty}\right\|+\sigma\left\|L \mu_{\infty}+G\right\|
\end{gathered}
$$

so that $A-A(\sigma) \geqslant \sigma(B(\sigma)-B)$ which implies

$$
[A+B \sigma]-\gamma(\sigma)=A-A(\sigma)+\sigma(B-B(\sigma)) \geqslant 0
$$

and

$$
\begin{aligned}
{[A+B \sigma]-\gamma(\sigma) } & \leqslant A-A(\sigma)+\sigma(B(\sigma)-B) \\
& \leqslant 2(A-A(\sigma)) \rightarrow 0
\end{aligned}
$$

This establishes (iii). To see that (iv) holds, suppose that $\lambda \in \Lambda$ and $B-\delta=$ $\|L \lambda+G\|$ for some $\delta>0$. Then

$$
\begin{aligned}
\gamma(\sigma) / \sigma & \leqslant\|\lambda\| / \sigma+\|L \lambda+G\| \\
& =\|\lambda\| / \sigma+B-\delta
\end{aligned}
$$

for all $\sigma>0$. Let $\sigma \rightarrow \infty$ and use (vi) of Theorem 4 to reach a contradiction.
Theorem 8. Let K have precisely n points. Then

$$
\begin{equation*}
F_{\sigma}=Q+\sigma H, \quad \text { for all } \sigma>0 \tag{27}
\end{equation*}
$$

where Q is a polynomial of degree $n-1$ or less and H is an element of X, $H \equiv 0$ on K.

Proof. If K has n points, then Λ is a singleton, say $\Lambda=\{\mu\}$. Hence,

$$
\frac{1}{\sigma} F_{\sigma}^{(n)}= \begin{cases}\operatorname{sgn}(L \mu+G+h)|L \mu+G+h|^{p^{\prime}-1}, & 1<p<\infty \\ \operatorname{sgn}(L \mu+G+h), & p=\infty\end{cases}
$$

for all σ. Thus, $F_{\sigma}=Q_{\sigma}+\sigma H$, where Q_{σ} is a polynomial of degree $n-1$ or less and H vanishes on K. But $F_{\tau}=F_{\sigma}$ on $\operatorname{supp}(\mu)$ by (14) so that $Q_{\sigma}=Q_{\tau}$ at n points and hence $Q_{\sigma} \equiv Q_{\tau}=: Q$. Thus,

$$
F_{\sigma}=Q+\sigma H .
$$

Corollary 9. If K has precisely n points, then $\gamma(\sigma)=A+B \sigma$ where A, B are constants.

Remarks. (1) The polynomial Q in Theorem 8 is the solution to
extremal problem (2) for $\sigma=0$; that is, Q has maximal r th derivative at ξ among all polynomials of degree $n-1$ which are bounded by 1 in modulus on K. Furthermore, H is the solution of the extremal problem described by maximizing $h^{(r)}(\xi)$ under the restrictions that $\left\|h^{(n)}\right\|_{p}=1$ and $h=0$ on the set K.
(2) The case when K is finite constrasts strongly with the case when say, $K=\Delta$. In the former case, the growth of $\gamma(\sigma)$ is basically the same for all r and n (the constants A and B depend on r and n, however), whereas in the latter case, the growth of $\gamma(\sigma)$ is basically $\sigma^{r / n}$ and thus depends quite directly on r and n.

Example 10. Let us take n to be $3, K=\left\{1, \lambda, \lambda^{2}\right\}$ where $\lambda=\exp [2 \pi i / 3]$ and $\xi=1$. Then by Theorem 8 ,

$$
F_{\sigma}=Q+\sigma H
$$

where Q is a polynomial of degree $2, H=0$ on K, and $\left\|H^{(3)}\right\|_{p}=1$. Q must be the unique polynomial of degree 2 which is bounded by 1 in modulus on K and which has maximal r th derivative at 1 among all such polynomials. First consider the case $r=1$. Here the unique element μ_{1} of Λ has weights 1 , $\lambda(1-\lambda)^{-1}$, and $(\lambda-1)^{-1}$ at $1, \lambda$, and λ^{2}, respectively. Let $Q_{1}(z)$ be defined by

$$
3 Q_{1}(z)=(1-\sqrt{3})+z+(1+\sqrt{3}) z^{2} .
$$

Then $\left|Q_{1}\right|=1$ on K and, indeed,

$$
Q_{1}\left(\lambda^{k}\right) \mu_{1}\left(\left\{\lambda^{k}\right\}\right)=\left|\mu_{1}\left(\left\{\lambda^{k}\right\}\right)\right|, \quad k=0,1,2,
$$

so that Q_{1} is the extremal polynomial for $r=1$.
Next consider the case $r=2$. The unique element μ_{2} of Λ has weights $2 / 3$, $(-2 / 3)\left(1+\lambda^{2}\right)$, and $(2 / 3)\left(\lambda^{2}\right)$ at $1, \lambda$, and λ^{2} respectively, and

$$
Q_{2}(z)=z^{2}
$$

is the extremal polynomial for $r=2$. It follows that for all $p, 1<p \leqslant \infty$, and all $\sigma \geqslant 0$, the extremal function for $r=1$ is not the same as the extremal function for $r=2$.

When $p=2$, the best H_{0}^{2} approximation to $L \mu+G$ is zero. Hence,

$$
H^{(3)}\left(e^{i \theta}\right)=\overline{c\left(L \mu\left(e^{i \theta}\right)+G\left(e^{i \theta}\right)\right)}
$$

where c is a constant selected so that $\left\|H^{(3)}\right\|_{2}=1$. A computation of the Fourier coefficients of μ_{1} and then of μ_{2} yields, for $r=1$ and $r=2$,

$$
\begin{equation*}
H_{1}^{(3)}\left(e^{i \theta}\right)=c_{1}\left[-g_{1}\left(e^{i \theta}\right)-2 g_{2}\left(e^{i \theta}\right)+G_{1}\left(e^{i \theta}\right)\right] \tag{28}
\end{equation*}
$$

and

$$
\begin{equation*}
H_{2}^{(3)}\left(e^{i \theta}\right)=c_{2}\left[-2 g_{2}\left(e^{i \theta}\right)+G_{2}\left(e^{i \theta}\right)\right] \tag{29}
\end{equation*}
$$

where

$$
\begin{align*}
& g_{1}\left(e^{i \theta}\right)=\sum_{0}^{\infty}[(3 k+1)!/(3 k+4)!] e^{(3 k+1) i \theta}, \tag{30}\\
& g_{2}\left(e^{i \theta}\right)=\sum_{0}^{\infty}[(3 k+2)!/(3 k+5)!] e^{(3 k+2) i \theta}, \tag{31}
\end{align*}
$$

and

$$
\begin{align*}
& G_{1}\left(e^{i \theta}\right)=\sum_{0}^{\infty}[k!/(k+2)!] e^{i k \theta} \tag{32}\\
& G_{2}\left(e^{i \theta}\right)=\sum_{0}^{\infty}[k!/(k+1)!] e^{i k \theta} . \tag{33}
\end{align*}
$$

Note that

$$
\begin{aligned}
\left.\left(z^{3} g_{1}\right)\right)^{\prime \prime \prime} & =z\left(1-z^{3}\right)^{-1} \\
\left(z^{3} g_{2}(z)\right)^{\prime \prime \prime} & =z^{2}\left(1-z^{3}\right)^{-1}
\end{aligned}
$$

which shows that g_{1}, g_{2} have analytic extensions to the complex plane with the three rays $\left\{t \lambda^{k}: t \geqslant 1\right\}, k=0,1,2$, deleted. As well, G_{1} and G_{2} have analytic extensions to the complex plane with the ray $\{t: t \geqslant 1\}$ deleted. Formulas (28)-(33) completely describe H_{1} and H_{2} along with the fact that H_{1} and H_{2} both vanish on K.

3. Properties of F_{σ}

We begin by analyzing the operator L given in (8).
Proposition 11. Let L be defined on $\mathscr{M}(K)$ by

$$
\begin{equation*}
(L \mu)\left(e^{i \theta}\right)=-\sum_{j=0}^{\infty}(j!/(j+n)!)\left\{\int_{K} z^{j+n} d \mu(z)\right\} e^{-i j \theta} \tag{34}
\end{equation*}
$$

Then

$$
\begin{equation*}
(L \mu)\left(e^{i \theta}\right)=-e^{i n \theta} \int_{K} M_{n}\left(z e^{-i \theta}\right) d \mu(z) \tag{35}
\end{equation*}
$$

where

$$
\begin{align*}
M_{n}(w) & =: \sum_{j=0}^{\infty}\left(j!/(j+n)!w^{j+n}, \quad|w| \leqslant 1\right. \tag{36}\\
& =A_{n}(1-w)^{n-1}\left(\log (1-w)+B_{n}\right)
\end{align*}
$$

and

$$
\begin{align*}
& A_{n}=(-1)^{n} /(n-1)!, \tag{37}\\
& B_{n}= \begin{cases}0, & n=1 \\
-\sum_{1}^{n-1} 1 / j, & n \geqslant 2\end{cases} \tag{38}
\end{align*}
$$

Proof. Formula (35) is of course only a rewriting of (34). Note that for $n \geqslant 2$ and $|w|<1$ we have

$$
\begin{gathered}
\frac{d}{d w} M_{n}=M_{n-1} \\
M_{1}(w)=\sum_{0}^{\infty} \frac{1}{j+1} w^{j+1}=-\log (1-w), \quad|w|<1
\end{gathered}
$$

Formulas (36)-(38) now follow by computation.
Corollary 12. The function of ζ given by

$$
(L \mu)(\zeta)=-\zeta^{n} \int_{K} M_{n}(z / \zeta) d \mu(z)
$$

extends $(L \mu)\left(e^{i \theta}\right)$ to be holomorphic on the sphere except on the union of the line segments from the origin to the points of $\operatorname{supp}(\mu)$.

Proof. For $z \in K$, the function $M_{n}(z / \zeta)$ is holomorphic on the sphere except the line segment from $\zeta=0$ to $\zeta=z$. The conclusion now follows by integration.

Theorem 13. Let α be an open arc of the unit circle T which contains no point of $K \cup\{\xi\}$. If $1<p<\infty$, then F_{σ} extends holomorphically across α.

Proof. Let λ be a point of the arc α. According to Corollary $12 L \mu_{\sigma}$ extends holomorphically to a neighborhood of λ. Further, using the notation of Proposition 11, G is actually $e^{i(n-r) \theta} M_{n-r}\left(\xi e^{-i \theta}\right)$ so that G is also holomorphic in a neighborhood of λ. Now (15) and (16)(b) and standard facts from function theory (see [1]) imply that $F_{\sigma}^{(n)}$ has an analytic extension across T near λ and hence the same holds for F_{σ}.

Corollary 14. If $K \cup\{\xi\} \subset \Delta_{0}$, then F_{σ} extends to be holomorphic in $\{z:|z|<R\}$ for some $R>1$. If $p=\infty$, then $(1 / \sigma) F_{\sigma}^{(n)}$ is a finite Blaschke product.

Proof. The only conclusion yet to be proved is the case when $p=\infty$. Here, $L \mu_{\sigma}+G$ extends to be holomorphic on $\left\{z:|z|>t_{0}\right\}$ for some $t_{0}<1$. If $L \mu_{\sigma}+G+h_{\sigma}=0$ on any set of positive measure in T, then $L \mu_{\sigma}+G+h_{\sigma}$ vanishes identically on T, which leads to a contradiction as in the proof of Theorem 1. Hence, $L \mu_{\sigma}+G+h_{\sigma} \neq 0$ a.e. $d \theta$. It now follows from (16)(a) and standard facts from function theory (see [1]) that $F_{o}^{(n)}$ extends holomorphically across all of T and thus $(1 / \sigma) F_{\sigma}^{(n)}$ is a finite Blaschke product.

Remark. Example 10 shows that in general Theorem 13 is the best to be expected since there, in the case $p=2, F_{\sigma}$ does not extend to holomorphic over T at any of the points of K while, of course, it does extend holomorphically acoss all other points of T.

Proposition 15. Let $K=A, \xi=1$, and $1<p \leqslant \infty, \sigma>0$. If F_{σ} is not a monomial in z and if $\left|F_{\sigma}^{(r)}(\lambda)\right|=\gamma(\sigma)$ for some $\lambda \in \Delta$, then λ is a root of unity.

Proof. Define v to be $\gamma(\sigma) / F_{\sigma}^{(r)}(\lambda)$ and $G(z)$ by

$$
G(z)=\bar{\lambda}^{r} \nu F_{\sigma}(\lambda z), \quad z \in \Delta
$$

Then $|G(z)| \leqslant 1$ on $\Delta,\left\|G^{(n)}\right\|_{p} \leqslant \sigma$, and $G^{(r)}(1)=\gamma(\sigma)$. Thus, $G(z)=F_{\sigma}(z)$ and so

$$
\lambda^{k-r} v=1 \quad \text { if } \quad F_{\sigma}^{(k)}(0) \neq 0
$$

Since F_{σ} is not a monomial, there are at least two such values of k and the proposition follows. (Note that for $p=2, F_{\sigma}$ is certainly not a monomial.)
Final remarks. (1) Clearly norms other than the sup norm over K could be imposed on f in defining the basic problem. I chose the sup norm on K for its interest and ease of formulation.
(2) It is also clear that the basic extremal problem could be formulated on a general planar domain Ω, rather than just on the unit disc Δ_{0}. When Ω is bounded by a finite number of disjoint smooth simple closed curves, the conclusions would be expected to follow the pattern presented here. The case of an arbitrary domain Ω is far too complex and even the solutions of simpler extremal problems are not well understood in this context.
(3) The case $p=1$ is not handled here because if $r=n-1$ and if $|\xi|=1$, then G is not bounded and hence $L \mu+G$ is not in L^{∞}. If $0<r<$ $n-1$ or if $r=n-1$ and $|\xi|<1$, then uniqueness of the extremal function
and the analysis of the growth of $\gamma(\sigma, 1)$ go through as above. If $p=1$, $r=n-1$, and $|\xi|=1$, then G must be replaced by a jump function (with jump at ξ). However, the analysis can be altered to fit this case and again there is only one extremal function and the behavior of $\gamma(\sigma, 1)$ is like that described for $1<p \leqslant \infty$.

References

1. S. D. Fisher, "Function Theory on Planar Domains," Wiley, New York, 1983.
2. S. D. Fisher and J. W. Jerome, Minimum norm extremals in function spaces, in "Lecture Notes in Mathematics No. 479," Springer-Verlag, Berlin, 1975.
